Andreas Klocker
Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia

A regime diagram for ocean geostrophic turbulence

Time and place
Thursday 27 August 2015, 15.15 NB! Unusal time
Room C609, Arrhenius Laboratory, 6th floor

A two-dimensional regime diagram for geostrophic turbulence in the ocean is constructed by plotting observation-based estimates of the nondimensional eddy radius and unsuppressed mixing length against a nonlinearity parameter equal to the ratio of the root-mean square eddy velocity and baroclinic Rossby phase speed. For weak nonlinearity, as found in the tropics, the mixing length mostly corresponds to the stability threshold for baroclinic instability whereas the eddy radius corresponds to the Rhines scale; it is suggested that this mismatch is indicative of the inverse energy cascade that occurs at low latitudes in the ocean and the zonal elongation of eddies. At larger values of nonlinearity, as found at mid- and high-latitudes, the eddy length scales are much shorter than the stability threshold, within a factor of 2.5 of the Rossby deformation radius.